Computational Spectroscopy
Category
Theory/Modeling
Laboratory
Lawrence Berkeley National Laboratory (LBNL)
Capability Experts
David Prendergast ([email protected])
Description
We provide support for modeling of the atomic and electronic structure of hydrogen storage materials—chemical hydrides and composites, sorbents (e.g., MOFs), gas-selective membranes, liquid organic hydrogen carriers (LOHCs)—and their functional interfaces at the nanoscale using first-principles density functional theory calculations. These studies can provide direct prediction and/or interpretation of X-ray spectroscopy data measured at synchrotrons (e.g., XANES) or in the lab (e.g., XPS). We place particular emphasis on modeling operando measurements, which are also a key capability within HyMARC at the Advanced Light Source (LBNL).
The Computational Spectroscopy capability provides:
- Training and support for first-principles computational modeling of materials and molecules for hydrogen storage and delivery;
- Guidance on bulk and interface measurements that can reveal mechanistic details of (de)hydrogenation processes;
- Simulation of nanoscale models of materials, molecules and their interfaces.
- Simulation of X-ray absorption (XAS, XANES, NEXAFS), emission (XES), and resonant inelastic X-ray scattering (RIXS);
- Simulation of X-ray photoemission (XPS) and its operando variations, typically ambient-pressure (AP-XPS).
Status
Online and available for use in collaboration with HyMARC.
Figures
References
- L. Chen, P Verma, K. Hou, Z. Qi, S. Zhang, Y. Liu, J. Guo, V. Stavila, M. Allendorf, L. Zheng, M. Salmeron, D. Prendergast, G. Somorjai, and J. Su, "Reversible Dehydrogenation and Rehydrogenation of Cyclohexane and Methyl-cyclohexane by Single Metal Platinum Catalyst," Nat Commun. 13, 1092 (2022).
- J. L. Snider, J. Su, P. Verma, F. El Gabaly, J. D. Sugar, L. Chen, J. M. Chames, A. Talin, C. Dun, J. J. Urban, V. Stavila, D. Prendergast, G. A. Somorjai and M. D. Allendorf, "Stabilized open metal sites in bimetallic metal–organic framework catalysts for hydrogen production from alcohols," J. Mater. Chem. A 9, 10869 (2021).
- G. M. Su, H. Wang, B. Barnett, J. R. Long, D. Prendergast, W. S. Drisdell, "Backbonding contributions to small molecule chemisorption in a metal–organic framework with open copper (I) centers," Chemical Science 12, 2156 (2021).
- Z. Zhang, J. Su, A. S. Matias, M. Gordon, Y. Liu, J. Guo, C. Song, C. Dun, D. Prendergast, G. A. Somorjai, J. J. Urban, "Enhanced and stabilized hydrogen production from methanol by ultrasmall Ni nanoclusters immobilized on defect-rich h-BN nanosheets," Proc. Nat. Acad. Sci. 117, 29442 (2020).
- L. F. Wan, E. S. Cho, T. Marangoni, P. Shea, S. Kang, C. Rogers, E. Zaia, R. R. Cloke, B. C. Wood, F. R. Fischer, J. J. Urban, and D. Prendergast, "Edge-functionalized graphene nanoribbon encapsulation to enhance stability and control kinetics of hydrogen storage materials," Chem. Mater. 31, 2960 (2019).
- J. L. White, A. J. E. Rowberg, L. Wan, S. Kang, T. Ogitsu, R. D. Kolasinski, J. A. Whaley, A. Baker, J. R. I. Lee, Y. Liu, L. Trotochaud, J. Guo, V. Stavila, D. Prendergast, H. Bluhm, M. D. Allendorf, B. C. Wood, and F. El Gabaly, "Identifying the Role of Dynamic Surface Hydroxides in the Dehydrogenation of Ti-doped NaAlH4," ACS Appl. Mater. Interfaces 11, 4930 (2019).